Skip to main content
Log in

A comparison of horizontally and vertically deployed aquatic invertebrate activity traps

  • Note
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Activity traps are commonly used to develop abundance indices of aquatic invertebrates and may be deployed with either the funnel parallel to the water surface (horizontal position) or facing down (vertical position). We compared the relative performance of these two positions in terms of numbers of invertebrates captured, species richness of samples, detection rates of specific taxa, and community-level characterizations. Estimates of zooplankton abundance were also compared to quantitative estimates obtained using a watercolumn sampler. We used a matched-pairs design where 10 pairs of traps (one horizontal, one vertical) were deployed in each of 4 prairie wetlands on 5 dates in 1999. Vertical traps had higher detection rates and captured greater numbers of adult and larval Coleoptera, Hemiptera, Chaoboridae, hydracarina, cladocera, and Copepoda and also produced samples with greater species richness. Horizontal traps captured greater numbers of Amphipoda and Ostracoda and had higher detection rates for these taxa. Estimates of zooplankton abundance with vertical traps also correlated better with quantitative estimates and indicated greater differences between wetlands than horizontal traps. Both traps showed similar relationships among wetlands and changes through time at the community level, but vertical traps were more sensitive to temporal change. Our results indicate that vertical traps outperform horizontal traps and are preferable for obtaining indices of invertebrate abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Anderson, J. T. and L. M. Smith. 1996. A comparison of methods for sampling epiphytic and nektonic aquatic invertebrates in playa wetlands. Journal of Freshwater Ecology 11:219–224.

    Google Scholar 

  • Bouffard, S. H. and M. A. Hanson. 1997. Fish in waterfowl marshes: waterfowl managers’ perspective. Wildlife Society Bulletin 25:146–157.

    Google Scholar 

  • Brinkman, M. A. and W. G. Duffy. 1996. Evaluation of four wetland aquatic invertebrate samplers and four sample sorting methods. Journal of Freshwater Ecology 11:193–200.

    Google Scholar 

  • Cheal, F., J. A. Davis, J. E. Growns, J. S. Bradley, and F. H. Whittles. 1993. The influence of sampling method on the classification of wetland macroin vertebrate communities. Hydrobiologia 257:47–56.

    Google Scholar 

  • Cox, B. B., M. A. Hanson, C. C. Roy, N. H. Euliss, D. H. Johnson, and M. G. Butler. 1998. Growth and survival of mallard ducklings in relation to aquatic invertebrates. Journal of Wildlife Management 62:124–133.

    Article  Google Scholar 

  • Euliss, N. H., D. A. Wrubleski and D. M. Mushet. 1999. Wetlands of the prairie pothole region: invertebrate species composition, ecology, and management. p. 471–514. In D. P. Batzer, R. P. Rader, and S. A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley, New York, NY, USA.

    Google Scholar 

  • Hanson, M. A. and M. R. Riggs. 1995. Effects of fish predation on wetland invertebrates: a comparison of wetlands with and without fathead minnows. Wetlands 15:167–175.

    Article  Google Scholar 

  • Hanson, M. A., C. C. Roy, N. H. Euliss, K. D. Zimmer, and M. G. Butler. 2000. A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands. Wetlands 20:205–212.

    Article  Google Scholar 

  • Kaminski, R. M. and H. R. Murkin. 1981. Evaluation of two devices for sampling nektonic invertebrates. Journal of Wildlife Management 45:493–496.

    Article  Google Scholar 

  • Keene, O. N. 1995. The log transformation is special. Statistics in Medicine 14:811–819.

    Article  CAS  PubMed  Google Scholar 

  • Littell, R. C., G. A. Milliken, W. W. Stroup, and R. C. Wolfinger. 1996. SAS System for Mixed Models. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  • Murkin, H. R. and D. A. Wrubleski. 1988. Aquatic invertebrates of freshwater wetlands: function and ecology. p. 239–249. In D. D. Hook, W. H. Mckee, H. K. Smith, J. Gregory, V. G. Burrell, M. R. Devoe, R. E. Sojka, S. Gilbert, R. Banks, L. H. Stolzy, C. Brooks, T. D. Matthews, and T. H. Shear (eds.) The Ecology and Management of Wetlands. Volume 1: Ecology of Wetlands. Croom Helm, London, England.

    Google Scholar 

  • Murkin, H. R., P. G. Abbott, and J. A. Kadlec. 1983. A comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Freshwater Invertebrate Biology 2:99–106.

    Article  Google Scholar 

  • Rice, W. R. 1990. A consensus combined P-value test and the family-wide significance of component tests. Biometrics 46:303–308.

    Article  Google Scholar 

  • SAS (Statistical Analysis Systems). 1990a. SAS/STAT User’s Guide, volume 1, fourth edition. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • SAS (Statistical Analysis Systems). 1990b. SAS/STAT User’s Guide, volume 2, fourth edition. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • Swanson, G. A. 1978. Funnel trap for collecting littoral macroinvertebrates. Progressive Fish-Culturist 40:73.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1995. Ordination. p. 91–173. In R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren (eds.) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • ter Braak, C. J. F. and P. Smilauer. 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, Version 4. Microcomputer Power. Ithaca, NY, USA.

    Google Scholar 

  • Turner, A. M. and J. C. Trexler. 1997. Sampling aquatic invertebrates from marshes: evaluating the options. Journal of the North American Benthological Society 16:694–709.

    Article  Google Scholar 

  • von Tongeren, O. F. R. 1995. Cluster analysis. p. 174–212. In R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren (eds.) Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Zimmer, K. D., M. A. Hanson, and M. G. Butler. 2000. Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Canadian Journal of Fisheries and Aquatic Sciences 57:76–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscha, M.J., Zimmer, K.D., Butler, M.G. et al. A comparison of horizontally and vertically deployed aquatic invertebrate activity traps. Wetlands 21, 301–307 (2001). https://doi.org/10.1672/0277-5212(2001)021[0301:ACOHAV]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2001)021[0301:ACOHAV]2.0.CO;2

Key Words

Navigation